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Abstract
We prove that there are compact submanifolds of the 3–sphere whose interiors are
not homeomorphic to any geometric limit of hyperbolic knot complements.

A hyperbolic knot complement is a complete hyperbolic 3–manifold homeomorphic to
the complement of a knot in S3. A complete hyperbolic 3–manifold M is a geometric
limit of hyperbolic knot complements if for every positive ε , every compact submani-
fold K in M admits a (1+ε)–bilipschitz embedding into a hyperbolic knot complement.
Geometric limits of hyperbolic knot complements were studied by J. Purcell and the
second author, who proved that every one–ended hyperbolic 3–manifold with finitely
generated fundamental group that embeds in S3 is a geometric limit of hyperbolic knot
complements [17, Theorem 1.1]. It follows that every compression body is homeomor-
phic to a geometric limit of hyperbolic knot complements, and, in particular, there are
geometric limits of hyperbolic knot complements with arbitrarily many ends.

The topology of such examples is not limited to that of compression bodies.

Example 1. There are compact hyperbolic 3–manifolds with totally geodesic discon-
nected boundary whose interior is homeomorphic to a geometric limit of hyperbolic
knot complements.

It should be remarked that by [17, Theorem 1.3], a hyperbolic 3–manifold with at
least two convex cocompact ends is not a geometric limit of hyperbolic knot comple-
ments. The example shows that such a manifold may nonetheless be homeomorphic to
one.

These results lead Purcell and Souto to wonder if a compact submanifold of S3

whose interior admits a convex cocompact hyperbolic structure could fail to be home-
omorphic to any geometric limit of knot complements [17, Question 4]. We construct
such a manifold here.

Example 2. There is a compact submanifold of S3 that admits a hyperbolic metric with
totally geodesic boundary whose interior is not homeomorphic to any geometric limit
of knot complements.
∗The second author has been partially supported by NSF grant DMS-0706878 and the Alfred P. Sloan

Foundation.
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Using elementary arguments about geometric limits, we obtain Example 2 as a
corollary of the following theorem.

Theorem 3. There is a compact oriented hyperbolic 3–manifold M with totally geo-
desic disconnected boundary that admits a unique orientation preserving embedding
M→ S3 up to isotopy. In fact, if Θ is a graph, then Θ admits an embedding into S3 so
that the exterior of Θ has a unique oriented embedding into S3 up to isotopy.

Note that it follows from Fox’s reembedding theorem [7] that any compact submanifold
of S3 that admits a single orientation preserving embedding in S3 is the exterior of an
embedded graph.

Using work of M. Lackenby [10], Theorem 3 is reduced to finding embeddings
of Θ satisfying a certain geometric condition, see Section 1. These embeddings are
obtained in Sections 2 and 3 by a variation of arguments in [9]. Theorem 3 and the
examples are established in the final section.

Acknowledgments. The authors thank Jessica Purcell for her interest and encourage-
ment as this work developed, and Jeff Brock, Ken Bromberg, and Dick Canary for nice
conversations.

1 Short obvious meridians and unique embeddings
A vertex of a graph is extremal if it has valence less than or equal to one. In this section
we consider finite embedded graphs Θ ⊂ S3 without extremal vertices. A branch
vertex is a vertex of valence at least three. We say that Θ is trivalent if all of its branch
vertices have valence three.

Every component of a regular neighborhood N(Θ) of an embedded graph Θ ⊂ S3

is a handlebody. Given an edge e of Θ, we say that an essential simple closed curve
m ⊂ ∂N(Θ) is an obvious meridian associated to the edge e if m bounds a disk D
in N(Θ) that intersects Θ transversally in a single point in the interior of e. Since
N(Θ)\Θ is homeomorphic to ∂N(Θ)× [0,1), every edge has an obvious meridian and
any two obvious meridians for e are isotopic in ∂N(Θ). Note that if Θ is trivalent and
∆⊂Θ is a connected component that is not a circle, then the obvious meridians form a
pants decomposition of ∂N(∆).

Following Myers [12], a compact oriented 3–manifold M is excellent if it is irre-
ducible atoroidal and acylindrical. Equivalently, the complement of the torus boundary
components of M admits a complete hyperbolic metric with totally geodesic boundary,
by Thurston’s Geometrization Theorem for Haken Manifolds [14]. By Mostow–Prasad
rigidity [11, 16], such a metric is unique up to isometry. Given Θ, we let MΘ be the
closure in S3 of the complement of N(Θ). With Myers, we say that Θ is excellent if
MΘ is.

Suppose from now on that MΘ is excellent and let M′
Θ

be the complete hyperbolic
manifold with totally geodesic boundary homeomorphic to the complement in MΘ of
the torus boundary components. Every torus T in ∂MΘ corresponds to a rank–two cusp
of M′

Θ
. Let P(T ) be the Margulis tube at this cusp with the property that the shortest

essential curve in ∂P(T ) has length one. It was proved in [1] that the union P of these
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Margulis tubes over all torus components of ∂MΘ is a disjoint union that does not meet
∂M′

Θ
. We identify MΘ with the complement of P in M′

Θ
. On each component of ∂MΘ

of negative Euler characteristic this determines a hyperbolic metric, and on each torus
a flat metric. So we may refer to the length `(γ) of a curve γ in ∂MΘ without risk of
confusion.

Given ε positive, we say that an excellent graph Θ ⊂ S3 has ε–short obvious
meridians if every obvious meridian m on a torus T in ∂MΘ has length `(m)< ε area(T ),
and every other obvious meridian has `(m)< ε .

We will refer to the subgraphs of Θ without extremal vertices as the descendants
of Θ. Both Θ and /0 are descendants of Θ, and every descendant of a trivalent graph is
trivalent. Our interest in excellent graphs, their descendants, and short obvious meridi-
ans is due to the following proposition.

Proposition 4. For each n, there is an ε such that when Θ⊂ S3 is an excellent trivalent
graph with |χ(Θ)| ≤ n such that every nonempty descendant ∆ ⊂ Θ is excellent and
has ε–short obvious meridians, then every embedding MΘ → S3 is the restriction of
a diffeomorphism S3→ S3. In particular, MΘ admits a unique orientation preserving
embedding MΘ→ S3 up to isotopy.

We derive Proposition 4 from the following result of Lackenby [10].

Theorem (Lackenby). Let M be a compact excellent 3–manifold and let C be the set
of essential simple closed curves γ ⊂ ∂M such that if γ lies in a component S of ∂M
with negative Euler characteristic, then

`(γ)≤ 4π

(1−4/χ(S))1/4− (1−4/χ(S))−1/4

and if γ lies in a torus, then `(γ)≤ 2π .
Along each component S of ∂M attach a 3–manifold HS via a homeomorphism

S→ ∂HS to obtain a manifold N. Then either N has infinite fundamental group or
there is a component S of ∂M containing a curve γ ∈ C which is sent by S→ ∂HS to a
curve bounding a properly embedded disk in HS.

In [10], this is only stated and proved when the HS are handlebodies, but the proof
applies without this restriction—see the proof of [17, Theorem 1.3]. Proposition 4
follows easily from Lackenby’s theorem and the following observation.

Lemma 5. For each n, there is an ε such that when Θ⊂ S3 is a trivalent excellent graph
with |χ(Θ)| ≤ n and ε–short obvious meridians, then the collection C in Lackenby’s
theorem is a collection of obvious meridians.

Proof. First consider a curve γ in C that lies in a component S of ∂MΘ with χ(S)< 0.
Note that |χ(S)| ≤ 2n. Suppose that each obvious meridian in S has length no more
than ε . By the Collar Lemma, each has a collar of width log(coth(ε/4)). In particular,
if ε is small enough that

log
(

coth
(

ε

4

))
>

4π

(1+4/n)1/4− (1+4/n)−1/4
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then γ must be isotopic off of the obvious meridians. Since the obvious meridians in S
form a pants decomposition, γ is an obvious meridian itself.

Now consider a torus T in ∂MΘ and recall that T is endowed with a Euclidean
metric of injectivity radius one. Suppose there is a curve γ in T with length `(γ)≤ 2π

that is not isotopic to the obvious meridian m in T . Then

1≤ area(T )≤ `(γ)`(m)≤ 2π`(m),

and this is not possible if Θ has (1/4π)–short obvious meridians.

Proof of Proposition 4. Given n, let ε be the number provided by Lemma 5 and sup-
pose that Θ ⊂ S3 is a trivalent graph such that all of its nonempty descendants are
excellent and have ε–short obvious meridians.

Let ϕ : MΘ → S3 be an embedding. For every component S of ∂MΘ let HS be
the connected component of S3 \ϕ(MΘ) facing ϕ(S). So, gluing the manifolds HS to
NΘ via the boundary identifications induced by ϕ , we obtain the 3–sphere. It follows
from Lackenby’s theorem and Lemma 5 that there is an obvious meridian m ⊂ ∂MΘ

whose image under ϕ bounds a properly embedded disk in HS. Let e be the edge of Θ

corresponding to m and let Θ′ be the largest descendant of Θ that does not contain e.
The manifold MΘ′ is homeomorphic to the manifold obtained by attaching a 2–

handle to MΘ along m and capping off boundary spheres. Since the image of m under
ϕ bounds a disk in HS, the embedding ϕ extends to an embedding ϕ ′ : MΘ′ → S3. If
Θ′ is empty, then MΘ′ = S3 and we are done.

Otherwise, observe that |χ(Θ′)| ≤ |χ(Θ)|. By assumption, Θ′ is excellent and has
ε–short meridians. The above argument yields a descendant Θ′′ of Θ′ such that the
embedding ϕ ′ extends to an embedding ϕ ′′ : NΘ′′ → S3. Repeating this process—no
more often than the number of edges in Θ—we obtain a diffeomorphism S3 → S3

which extends ϕ .
The final statement follows from the fact that the group of orientation preserving

diffeomorphisms of S3 is connected.

We now set about constructing graphs with arbitrarily short obvious meridians.

2 Really excellent graphs
Let X be a finite graph. We let ∂X denote the set of extremal vertices in X , and write
X◦ = X − ∂X . Let M a 3–manifold. An embedding X →M is proper if it induces a
map of triples (X ,X◦,∂X)→ (M,M◦,∂M). A finite graph X properly embedded in M
is excellent if the exterior M \X is excellent. We say that a proper embedding X →M,
or its image, is nice if X is nonempty, has no isolated vertices, and no component of
∂ (M \X) is a sphere. Given a nice proper embedding X →M, a subgraph Y is nice if
the induced embedding is.

We will need the following mild generalization of Myers’ theorem [12].

Theorem 6. Let M be an oriented 3–manifold. Let X be a finite graph without isolated
vertices. If there is a nice embedding X → M, then there is nice embedding X → M
with the property that M \Y is excellent for any nice subgraph Y .
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Figure 1: Suzuki’s Brunnian graph on seven edges.

Theorem 6 has the following corollary.

Corollary 7. Let X be a finite graph without isolated vertices properly embedded in
a handlebody H of positive genus. Then there is an embedding X → H with the prop-
erty that if Y is any nonempty subgraph of X without isolated vertices, then H \Y is
excellent.

We need some preliminary lemmata. Let B be a 3–ball. Recall that a tangle is
Brunnian if removing any strand results in the trivial tangle.

Lemma 8. For each n, there is an excellent Brunnian n–tangle in B.

Proof. The exterior of Suzuki’s Brunnian graph Θn+1 on n+1 edges, pictured in Figure
1, admits a hyperbolic structure with totally geodesic boundary, see [15, 21], and is
thus excellent. Moreover, the exterior of Θn+1 is homeomorphic to the exterior of a
Brunnian n–tangle in a ball—see Figure 2. Since the exterior of Θn+1 is excellent, so
is the exterior of the tangle.

If X is a graph, and Γ a subgraph, we let X −Γ be the graph obtained by removing
Γ and taking the closure. If X and Y are properly embedded graphs in a 3–manifold M,
we write X ∼ Y if they are ambiently isotopic.

Lemma 9. Let g : X →M be a nice embedding. Let ∆ be a nice subgraph of X. There
is an embedding f : X →M with f (∆) excellent and such that for any edge e of ∆,

f (∆− e)∼ g(∆− e) and f (X− e)∼ g(X− e).

Proof. Let e1, e2, . . ., em be the edges of ∆. For each i, let yi be a point in the interior
of ei and let xi = g(yi). Let α be an arc in M whose left endpoint is x1, whose right
endpoint is xm, and whose intersection with g(X) is {x1, . . . ,xm}.

By Myers’ theorem [12], the arc α is homotopic relative to {x1, . . . ,xm} to an arc β

with β ∩g(X) = {x1, . . . ,xm} such that g(∆)∪β is excellent.
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Figure 2: An excellent Brunnian tangle on six strands.

Let N(β ) be a regular neighborhood of β whose intersection with g(X) is the stan-
dard trivial m–tangle in N(β ) ∼= B, each strand containing an xi. It is easy to see
that ∂N(β ) \ g(∆) is incompressible in M \ (g(∆)∪N(β )). Moreover, the exterior of
N(β )\g(∆) in M \g(∆) is excellent, as it is homeomorphic to M \ (g(∆)∪β ).

Now, in the obvious way, replace N(β )\g(∆) =N(β )\g(X) with the exterior of an
excellent Brunnian m–tangle given by Lemma 8. The resulting manifold is excellent,
by Myers’ gluing lemma, Lemma 2.1 of [12], and is homeomorphic to the exterior of
an embedding f : ∆→M. Since the tangle is Brunnian, if e is an edge of ∆, we have

f (∆− e)∼ g(∆− e) and f (X− e)∼ g(X− e).

Lemma 10. Let X be a finite graph without isolated vertices and let S(X) be the set
of subgraphs of X without isolated vertices. Then there is an ordering Γ1, . . . ,Γm of the
elements of S(X) such that Γk 6⊂ Γ j when k < j.

Proof. If X is a single edge, there is nothing to do.
Let E > 1. Suppose that we have proven the lemma for all graphs whose number

of edges is strictly less than E, and suppose that X has E edges.
Pick an edge e of X . Partition S(X) into two sets S+ and S−, the first consisting

of those subgraphs that contain e, the latter of those that do not. These sets are order
isomorphic when equipped with the partial order induced by inclusion, as is easily seen
by sending each subgraph in S− to the subgraph in S+ obtained by adding e.

By induction, we may order S−, and hence S+, as desired. Namely

S+ = {Γ1, . . . ,Γ`} and S− = {Γ`+1, . . . ,Γ2`}.

As no element of S+ is contained in any element of S−, our desired ordering is
Γ1, . . . ,Γ2`.
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Proof of Theorem 6. Let Γ1, . . . ,ΓN be the allowable removable subgraphs of X—so
each X−Γi is nice. By Lemma 10, we may assume Γk 6⊂ Γ j when k < j, and we do so.

By Myers’ theorem [12], there is an embedding g1 : X → M with image X1 such
that X1−g1(Γ1) is excellent. To see this, note that there is an excellent embedding g0
of X−Γ1 in M. We may then build an embedding of Γ1 into M−g0(X−Γ1) to obtain
the desired embedding.

We want an embedding gN : X →M with excellent image XN so that XN −gN(Γk)
is excellent for all k.

Suppose that we have constructed an embedding g j : X →M with image X j so that
for any k ≤ j, the graph X j − g j(Γk) is excellent. We will construct an embedding
g j+1 : X →M with image X j+1 so that for any k ≤ j+1, the graph X j+1−g j+1(Γk) is
excellent.

Apply Lemma 9 to g j with ∆ = X−Γ j+1 to obtain an embedding f j : X →M with
image Yj such that Yj− f j(Γ j+1) is excellent and deleting any edge f j(e) of f j(∆) =
Yj− f j(Γ j+1) from Yj yields a graph ambiently isotopic to X j−g j(e).

If k < j+1, then Γk 6⊂Γ j+1, and so there is an edge e in Γk that lies in ∆=X−Γ j+1.
So

Yj− f j(Γk) ∼ X j−g j(Γk)

when k ≤ j, which is excellent by induction.
Now apply Lemma 9 to f j with ∆ = X to obtain an embedding g j+1 with excellent

image X j+1. So deleting any edge g j+1(e) from X j+1 yields a graph ambiently isotopic
to Yj− f j(e).

So, if k ≤ j, then X j+1−g j+1(Γk) has the same exterior as Yj− f j(Γk), which has
the same exterior as X j−g j(Γk), which is excellent by induction.

Finally note that X j+1−g j+1(Γ j+1) = Yj− f j(Γ j+1) is also excellent.
We are now done by induction.

3 Graphs with short obvious meridians
Let F be a separating surface of genus at least two in a 3–manifold M. Let Θ be a
graph intersecting F transversely in a nonempty set of points such that the components
M1 and M2 of M \ (F ∪Θ) are excellent. Let P be the union of tori in ∂MΘ and let
Q j = P∩M j. We consider (M,P) and the (M j,Q j) as pared manifolds. Let S = F \Θ.
So MΘ = M1 ∪S M2. If ϕ is a pure braid in Mod(S), let Mϕ

Θ
be the manifold obtained

by gluing the M j together via ϕ . Such an Mϕ

Θ
is the exterior of a different embedding

of Θ into M and admits a hyperbolic structure with totally geodesic boundary.

Proposition 11. Let ε > 0. If ϕ is pseudo-Anosov, then for all sufficiently large n, the
length of each component of ∂S is less than ε in the metric on Mn = Mϕn

Θ
with totally

geodesic boundary.

Proof. Equip Mn with its hyperbolic metric with totally geodesic boundary, and let

ρ
n : π1(Mn)→ PSL2C
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be the associated holonomy representation. Let ρn
j : π1(M j)→ PSL2C be the repre-

sentations induced by the inclusions M j→Mn. Let α be a simple closed essential and
nonperipheral curve in S.

Since M2 is excellent, the set

AH(M2)⊂ Hom(π1(M2),PSL2C)/PSL2C

of discrete faithful representations is compact, by [19]. In particular, there is an L > 0
such that, for all n, the translation length `(ρn

2 (α)) of ρn
2 (α) acting on H3 is bounded

above by L. It follows that, for all n, the geodesic representative of α in Mn has length
bounded by L. Viewing S as a subsurface of ∂M1, we have

`
(
ρ

n
1
(
ϕ
−n(α)

))
≤ L for all n. (1)

By [20], every subsequence of the ρn
1 has a further subsequence that converges

algebraically to the holonomy representation of a hyperbolic structure with parabolics
at Q1. Let ρ∞

1 be such a limit. In the space PML(S) of projective measured laminations
on S, the sequence ϕ−n(α) converges to the unstable lamination λ− of ϕ . By (1)
and continuity of Thurston’s length function [3, Corollary 7.3], the lamination λ− is
not realized in ρ∞

1 . Thurston’s compactness theorem for pleated surfaces [5, Theorem
5.2.2] now implies that ρ∞

1 takes each component of ∂S to a parabolic element. Since
this is true for any limit obtained by passing to a subsequence of the ρn

1 , we have that,
for all large n, the representation ρn

1 carries each component of ∂S to an element with
small translation length.

It follows that if β is a component of ∂S that does not lie in Q1, its length in Mn

tends to zero.
Given a subsequence of the Γn

1 = ρn
1 (π1(M1)), we may always pass to a further

subsequence that converges algebraically to some Γ∞
1 and geometrically to some Γ̂1,

see [18, Corollary 9.18] and [8, Proposition 3.8]. The manifold M∞
1 = H3/Γ∞ covers

M̂1 =H3/Γ̂. By the above, the manifold M∞
1 has a degenerate relative end E at S—see

Section V of [2].
Geometric convergence of a subsequence of the Γn

1 implies that we may pass to a
further subsequence so that the Γn = ρn(π1(Mn)) converge geometrically to a mani-
fold M̂ covered by M̂1, and hence M∞

1 . To see this, let γ be a closed geodesic in M̂1
corresponding to a nonperipheral embedded curve in S, and let γn be the corresponding
geodesics in the Mn

1 = H3/Γn
1 . We choose basepoints xn in the γn to realize the geo-

metric convergence Mn
1 → M̂1, and let yn be the image of xn in Mn. We claim that there

is an r > 0 such that the injectivity radius of Mn at yn is at least r. Suppose that this
is not the case. Then for each ε > 0, the image of γn in Mn intersects the ε–thin part
of Mn for infinitely many n. Now, the lengths of the γn are uniformly bounded below.
Since the M1 and M2 are excellent, any embedded curve in S is primitive in π1(Mn),
and so γn is primitive there. It follows that γn cannot lie entirely in an ε–Margulis tube
when ε is small compared to the length of γn. By Brooks and Matelski’s theorem [4],
the distance between the boundary of the δ–thin part and that of the ε–thin part tends
to infinity as ε tends to zero, and we are forced to conclude that the lengths of the γn
tend to infinity after passing to a subsequence. But the lengths of the γn are bounded
above, as they tend to the length of γ .
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Since the set of manifolds with injectivity radius r > 0 at the basepoint is compact
in the geometric topology [5, Corollary 3.1.7], we may pass to a subsequence so that
the (Mn,yn) converge geometrically to a manifold M̂, which is covered by M̂1.

By the Covering Theorem [6], the restriction of the covering map M∞
1 → M̂ to E is

finite–to–one. It follows that, in M̂, the cusps corresponding to the parabolic elements
at Qi are rank–one cusps.

So, if β lies in ∂Q1 = ∂Q2, it has zero extremal length in a cusp cross section of any
geometric limit M̂ of the Mn, and so its extremal length tends to zero in the Mn.

Theorem 12. Let Θ be a nonempty graph with ∂Θ = /0 and let ε > 0. There is an
embedding of Θ into S3 such that if ∆ is a nice subgraph of Θ , then S3 \∆ admits a
hyperbolic structure with totally geodesic boundary and ε–short obvious meridians.

Proof. Let F be a genus–2 Heegaard surface cutting S3 into handlebodies A and B.
Choose an embedding Θ→ S3 such that the vertices of Θ miss F and each edge of
Θ intersects F transversally in at least one point. It follows that if ∆ is a nonempty
connected descendant of Θ, then each edge of ∆ intersects F .

The surface F cuts Θ into two properly embedded graphs X ⊂ A and Y ⊂ B. Let
X →A and Y → B be the embeddings given by Corollary 7, and call the images X and
Y again.

Let S = F−X = F−Y , a punctured surface of genus two. Given a pure braid ζ in
Mod(S), we obtain a new embedding Θ→ S3 by realizing ζ as a homeomorphism h of
F fixing Θ∩F pointwise, cutting S3 along F , and regluing via h.

Let ∆1, . . . ,∆n be the nice subgraphs of Θ. By reversing the order given by Lemma
10, we may assume that if ∆ j is a subgraph of ∆i, then j < i. In particular, ∆n = Θ.

For each i, let Si = F−∆i. Each Si is a punctured surface of genus two, and so ad-
mits a Brunnian pseudo-Anosov braid ϕi, compare [22]—a mapping class is Brunnian
if it becomes the identity whenever a puncture is filled.

If ψ is a pure braid in Mod(S), we let κ j(ψ) denote the descendant of ψ in Mod(S j).
For each j, we choose a braid ψ j in Mod(S) with κ j(ψ j) = ϕ j and such that if ∆ j is not
a subgraph of ∆i, then κi(ψ j) = 1. This is possible as we may choose ψ j to be a braid
descending to ϕ j such that filling any puncture of S that survives in S j kills ψ j.

If a1, . . . , ai−1 are integers, then, for all sufficiently large N, the pure braid

ϕ
N
i κi(ψ

ai−1
i−1 ) · · ·κi(ψ

a1
1 )

in Mod(Si) is pseudo-Anosov.
Let

ζ` = ψ
`n
n · · · ψ

`2
2 ψ

`1
1 ,

and let ζ`,i = κi(ζ`). By our ordering of the ∆ j and choice of the ψ j,

ζ`,i = κi(ψ
`n
n ) · · · κi(ψ

`1
1 )

= ϕ
`i
i κi(ψ

`i−1
i−1 ) · · ·κi(ψ

`1
1 )

Now, by Proposition 11, we may choose `n� `n−1� ···� `1� 1 and L� `n so that
all of the gluing maps ζL

`,i : Si → Si yield graphs Θi in S3 whose complements admit
hyperbolic structures with totally geodesic boundary in which the obvious meridians
all have length less than ε . So Θn is the image of the desired embedding.
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4 Manifolds inaccessible to knot complements
Proof of Theorem 3. Let Θ be a graph and let Φ be the union of the tree components
of Θ. A regular neighborhood of Φ is a disjoint union of balls, and it is easy to see that
S3 \Θ has a unique oriented embedding into S3 if S3 \ (Θ−Φ) does.

So let Θ be a graph with no tree components. If Θ is empty, there is nothing to
do. Assume that Θ is nonempty. Every graph exterior in S3 is homeomorphic to the
exterior of a 3–valent graph, and so we assume that Θ is 3–valent. Since no component
of Θ is a tree, its exterior is homeomorphic to the exterior of a 3–valent graph without
extremal vertices, and we assume that Θ has this property as well.

Let ε be the constant provided by Theorem 4 when n = |χ(Θ)|. By Theorem 12,
there is an embedding ι : Θ→ S3 such that every nonempty descendant of ι(Θ) is
excellent and has ε–short obvious meridians. Let M = S3 \N(ι(Θ)) be the exterior of
a regular neighborhood of ι(Θ) in S3. Since ι(Θ) is excellent, M admits a hyperbolic
metric with totally geodesic boundary. By Theorem 4, any two orientation preserving
embeddings M→ S3 are isotopic.

We are now ready to produce the Examples from the introduction.

Example 2. Let N ⊂ S3 be a manifold with disconnected boundary containing no tori
or spheres provided by Theorem 3.

Suppose there is a sequence of hyperbolic knot complements Mi = S3 \Ki which
converges geometrically to a complete hyperbolic manifold M homeomorphic to the
interior of N. Identify N with a compact submanifold of M in such a way that M \N
has a product structure. Geometric convergence provides a sequence of better and
better bilipschitz embeddings ϕi : N → Mi. The Mi are knot complements and so sit
naturally in the 3–sphere. Composing the ϕi with these natural embeddings Mi → S3

we obtain embeddings ψi : N → S3. By Theorem 3, we may postcompose the maps
Mi → S3 with homeomorphisms of S3 so that each ψi is the identity map. It follows
that, for all i, the knot Ki is disjoint from N.

Since ∂N is disconnected, S3 \N has at least two components. Observe that by
construction all these components are handlebodies. Passing to a subsequence we may
assume that all of the Ki lie in a single one of these, U say. Letting V be a component
of S3 \N different from U , we see that if m ⊂ ∂N bounds a disk embedded in V then
the curves ϕi(m) are homotopically trivial in the Mi for all i.

Now, the ϕi are bilipschitz embeddings. So there is an L > 1 such that the curves
ϕi(m) have length at most L for all i. A homotopically trivial curve of length L in a
hyperbolic 3–manifold bounds a disk with diameter no more than L. It follows that the
curve m is homotopically trivial in the geometric limit M. But the inclusion N→M is
a homotopy equivalence and m is essential in N.

Example 1. Consider the genus–2 Heegaard splitting S3 = H ∪H ′ and let Θ be an
excellent graph in H. Let ϕ : ∂H → ∂H be a pseudo-Anosov mapping class which
extends to H and whose attracting and repelling laminations lie in the Masur domain
of H ′, and consider the sequence of manifolds Nn obtained by gluing H \Θ and H ′

via ϕn. Note that Nn is homeomorphic to S3 \ϕn(Θ). As in [13], it follows that for
all sufficiently large n, the manifold Nn is excellent and hence admits a hyperbolic
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metric with totally geodesic boundary. Equip Nn with this metric. It is an (advanced)
exercise in Kleinian groups to prove that the sequence Nn has a geometric limit N∞

homeomorphic to the interior of H \Θ. Furthermore, the manifold Nn satisfies the
conditions of [17, Theorem 1.1] and is hence a geometric limit of knot complements.
Being a geometric limit of geometric limits of knot complements, N∞ is a geometric
limit of knot complements itself.
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